Antes de nada habrá que saber qué es la polarización, así que intentaré explicarlo de la manera más sencilla posible. La luz se trata de una onda electromagnética que se propaga en todas las direcciones, por eso cuando encendemos una lámpara se ilumina toda la habitación y no solo el suelo que tiene debajo. El decir que es una onda electromagnética significa que tiene una componente de campo eléctrico y otra de campo magnético. Estos dos campos llevan direcciones perpendiculares y el uno depende del otro de modo que para nuestra explicación servirá con hablar únicamente de uno de ellos, por ejemplo el eléctrico.
Pues bien, el campo eléctrico de la luz mientras se propaga por el espacio va continuamente girando en todos los planos. Esto es como si cogéis un folio y lo empezáis a girar continuamente por su eje central. El campo eléctrico de la luz hace eso mismo. Pero, ¿qué ocurre si conseguimos que la luz únicamente vaya en un plano? La respuesta es muy sencilla. Y es que una vez conseguido esto, decimos que la luz está polarizada. Quizá sea un poco lioso explicarlo de palabra, pero se ve fácilmente con un dibujo.
El conseguir la polarización de la luz no es un trabajo complicado aunque parezca difícil. Lo que se debe hacer es disponer de una lámina con unas ranuras de una altura determinada y en una posición determinada. Para la luz, por ejemplo, la altura de estas aberturas debe ser del orden de la longitud de onda de la luz, es decir entre 380 y 780 nanómetros, dependiendo del color que queramos obtener. Para una onda electromagnética de mayor longitud de onda como por ejemplo las microondas, las ranuras deben ser de entre un milímetro y un metro.
Lo de la posición tiene que ver con la absorción del campo eléctrico que tiene lugar en las ranuras, pero sería bastante complicado de explicar, de modo que os diré lo que podéis hacer para comprobarlo experimentalmente. Cuando vais al cine IMAX en 3D, las gafas están diseñadas para polarizar la luz en el sentido correcto para obtener la ilusión en 3D. Pero, ¿que ocurre si giramos nuestra cabeza acercándola a uno de nuestros hombros? Pues que estaremos cambiando en 90 grados el ángulo de las microscópicas ranuras de las gafas, por lo que la polarización no se produce y veréis la película igual que si no las tuvierais puestas. Si sois muy impacientes y queréis ver este efecto antes de que empiece la película también podéis usar vuestro teléfono móvil. La luz que sale de él está polarizada ya que las pantallas de cristal líquido o LCD funcionan de este modo. Así que si giráis el móvil enfrente de vosotros, notaréis variaciones en el brillo de la pantalla, e incluso puede llegar a verse completamente oscura. De ahí que sea imprescindible disponer de las ranuras en la posición adecuada.
Si queréis hacer vuestras propias pruebas en internet, tenéis esta página en la que podréis elegir el ángulo con el que veis la luz polarizada. Considerad lo que llaman analizador como si fuera vuestra vista. Espero que gracias a esta página podáis entender mejor todo este tema de la polarización de la luz.
Aquí tenéis unas gafas para producir la polarización:
Pues bien, el campo eléctrico de la luz mientras se propaga por el espacio va continuamente girando en todos los planos. Esto es como si cogéis un folio y lo empezáis a girar continuamente por su eje central. El campo eléctrico de la luz hace eso mismo. Pero, ¿qué ocurre si conseguimos que la luz únicamente vaya en un plano? La respuesta es muy sencilla. Y es que una vez conseguido esto, decimos que la luz está polarizada. Quizá sea un poco lioso explicarlo de palabra, pero se ve fácilmente con un dibujo.
El conseguir la polarización de la luz no es un trabajo complicado aunque parezca difícil. Lo que se debe hacer es disponer de una lámina con unas ranuras de una altura determinada y en una posición determinada. Para la luz, por ejemplo, la altura de estas aberturas debe ser del orden de la longitud de onda de la luz, es decir entre 380 y 780 nanómetros, dependiendo del color que queramos obtener. Para una onda electromagnética de mayor longitud de onda como por ejemplo las microondas, las ranuras deben ser de entre un milímetro y un metro.
Lo de la posición tiene que ver con la absorción del campo eléctrico que tiene lugar en las ranuras, pero sería bastante complicado de explicar, de modo que os diré lo que podéis hacer para comprobarlo experimentalmente. Cuando vais al cine IMAX en 3D, las gafas están diseñadas para polarizar la luz en el sentido correcto para obtener la ilusión en 3D. Pero, ¿que ocurre si giramos nuestra cabeza acercándola a uno de nuestros hombros? Pues que estaremos cambiando en 90 grados el ángulo de las microscópicas ranuras de las gafas, por lo que la polarización no se produce y veréis la película igual que si no las tuvierais puestas. Si sois muy impacientes y queréis ver este efecto antes de que empiece la película también podéis usar vuestro teléfono móvil. La luz que sale de él está polarizada ya que las pantallas de cristal líquido o LCD funcionan de este modo. Así que si giráis el móvil enfrente de vosotros, notaréis variaciones en el brillo de la pantalla, e incluso puede llegar a verse completamente oscura. De ahí que sea imprescindible disponer de las ranuras en la posición adecuada.
Si queréis hacer vuestras propias pruebas en internet, tenéis esta página en la que podréis elegir el ángulo con el que veis la luz polarizada. Considerad lo que llaman analizador como si fuera vuestra vista. Espero que gracias a esta página podáis entender mejor todo este tema de la polarización de la luz.
Aquí tenéis unas gafas para producir la polarización:
¿Cómo se consigue la ilusión 3D con lentes polarizadas?
Al final volvemos a lo mismo. Se proyectan dos películas superpuestas una para cada ojo, y eso provoca la sensación de 3D. Las lentes polarizadas sirven para que por un ojo sólo se vea una de las proyecciones, y por el otro la otra. Es decir, que se proyectan dos películas ambas con luz polarizada, pero en distintos planos. Así mediante las gafas, cada proyección sólo se ve por el ojo adecuado. Si por ejemplo una de las dos proyecciones cae, el lado correspondiente quedará en negro, ya que no pasará nada de luz. La luz de la proyección destinada al otro ojo no pasa, ya que la gafa sólo deja pasar por ese lado la luz que se propague en un determinado plano.
Haz la prueba
Vete a una sala de cine 3D que tenga el sistema IMAX 3D. Durante la película quítate las gafas, y verás que sin las lentes polarizadas ves una película doble. Cuando te pones las gafas lo ves todo en 3D, porque cada lente selecciona una película para cada ojo.
Otra cosa que puedes hacer es cerrar un ojo. Si cierras un ojo, desaparecerá la ilusión de 3D, ya que se basa precisamente en la disparidad BINOCULAR. Eso quiere decir que se necesitan 2 ojos para percibir el efecto. Y esto es válido para el IMAX y para todos los sistemas anteriores. Si cerramos un ojo el efecto se va.
Fíjate
Pon un dedo frente a tus ojos y enfoca un objeto que esté más lejos que el dedo. Si nos fijamos, si un objeto está muy cerca de nosotros, existe mucha disparidad (si enfocamos un objeto más lejano). Si tengo el dedo muy cerca de los ojos y hago lo de cerrar un ojo y luego abrirlo y cerrar el otro, la imagen del dedo cercano parece moverse mucho. Si lo alejo un poco la disparidad es menor, y al hacer lo de cerrar un ojo y luego el otro, parece moverse menos.
Fíjate en el cine. Si te quitas las gafas verás que los objetos que se supone están muy cerca de ti en la ilusión de 3D (que casi parece que puedes tocarlos), al quitarse uno las gafas son los que más distancia tienen con su copia (con los mismos objetos en la otra proyección superpuesta). Los objetos que están algo más alejados, tienen una separación menor.
Podrás también ver cómo cuando en la ilusión 3D acercan un objeto (como las letras del final que a veces las presentan así), el objeto al ser visto sin las gafas polarizadas lo que hace es separarse de su copia (que realmente no es una copia, sino una imagen muy similar vista desde un punto de vista ligeramente diferente: el de nuestro otro ojo).
Saliéndonos de la disparidad: constancia del tamaño
Al final volvemos a lo mismo. Se proyectan dos películas superpuestas una para cada ojo, y eso provoca la sensación de 3D. Las lentes polarizadas sirven para que por un ojo sólo se vea una de las proyecciones, y por el otro la otra. Es decir, que se proyectan dos películas ambas con luz polarizada, pero en distintos planos. Así mediante las gafas, cada proyección sólo se ve por el ojo adecuado. Si por ejemplo una de las dos proyecciones cae, el lado correspondiente quedará en negro, ya que no pasará nada de luz. La luz de la proyección destinada al otro ojo no pasa, ya que la gafa sólo deja pasar por ese lado la luz que se propague en un determinado plano.
Haz la prueba
Vete a una sala de cine 3D que tenga el sistema IMAX 3D. Durante la película quítate las gafas, y verás que sin las lentes polarizadas ves una película doble. Cuando te pones las gafas lo ves todo en 3D, porque cada lente selecciona una película para cada ojo.
Otra cosa que puedes hacer es cerrar un ojo. Si cierras un ojo, desaparecerá la ilusión de 3D, ya que se basa precisamente en la disparidad BINOCULAR. Eso quiere decir que se necesitan 2 ojos para percibir el efecto. Y esto es válido para el IMAX y para todos los sistemas anteriores. Si cerramos un ojo el efecto se va.
Fíjate
Pon un dedo frente a tus ojos y enfoca un objeto que esté más lejos que el dedo. Si nos fijamos, si un objeto está muy cerca de nosotros, existe mucha disparidad (si enfocamos un objeto más lejano). Si tengo el dedo muy cerca de los ojos y hago lo de cerrar un ojo y luego abrirlo y cerrar el otro, la imagen del dedo cercano parece moverse mucho. Si lo alejo un poco la disparidad es menor, y al hacer lo de cerrar un ojo y luego el otro, parece moverse menos.
Fíjate en el cine. Si te quitas las gafas verás que los objetos que se supone están muy cerca de ti en la ilusión de 3D (que casi parece que puedes tocarlos), al quitarse uno las gafas son los que más distancia tienen con su copia (con los mismos objetos en la otra proyección superpuesta). Los objetos que están algo más alejados, tienen una separación menor.
Podrás también ver cómo cuando en la ilusión 3D acercan un objeto (como las letras del final que a veces las presentan así), el objeto al ser visto sin las gafas polarizadas lo que hace es separarse de su copia (que realmente no es una copia, sino una imagen muy similar vista desde un punto de vista ligeramente diferente: el de nuestro otro ojo).
Saliéndonos de la disparidad: constancia del tamaño
Los objetos más cercanos ocupan un mayor espacio en la retina. Los más lejanos ocupan un espacio menor. Es lo que se llama constancia del tamaño en función de la distancia. Y es que la distancia percibida a la que están los objetos no es una dimensión independiente a la del tamaño percibido, sino que están en relación. Así si por ejemplo manipulamos las claves de la distancia percibida, el tamaño varía y se producen ilusiones de tamaño. Lo vimos aquí y aquí hace algún tiempo.
Haz la prueba
Cuando vayas al cine fíjate bien. Cuando algo se acerca mucho en la ilusión de 3D, si uno se quita las gafas, lo que ve es que se separan las imágenes y aumentan su tamaño.
Es decir, que aumenta la separación de las imágenes de las dos películas (del objeto que se acerca) y aumentan su tamaño. Por ejemplo, se acerca un tiburón a comernos. Pues la imagen del mismo en las dos proyecciones se separa más y más, según percibimos que se acerca en la ilusión. Y su tamaño aumenta para mantener la constancia de tamaño.
Disfrutad probando por vosotros mismos :)
Y mañana: bases cerebrales de la disparidad binocular.
2 comentarios:
¿Has pegado alguna vez fixo al monitor del portatil? Hazlo. Pon pequeñas tiras, que si pisen unas con otras por algunas esquinas. Verás qué chulada.
Excelente explicación de polarización. Muchas gracias.. quedo muy claro.
Ahora una pregunta:
¿es posible hacer una impresión 3d para que esta sea vista con lentes polarizadores?.
Me he dado mil vueltas al asunto y como que no llegoa una solución.
Lo que tengo claro es que debería ser un soporte iluminado desde atra de la impresión. El polarizado quita muchos puntos de luz.
Alguna técnica?.. ayuda.. ayuda!!.
ja!
Gracias por el post. me sirvió mucho.
Saludos
Tapio
Publicar un comentario